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We examine the N -partite quaternion and octonion dichotomic Bell inequalities derived by Vogel and Shchukin
utilizing the square identities of Euler and Degen, which apply to experiments with M settings at each spatially
separated site. We reveal these inequalities to be violated by the Greenberger-Horne-Zeilinger state, for N � 3
and 2 � M � 8. Violations are robust with respect to loss, the threshold detection efficiency being η > 2

2
N

−1 for
all M , implying violations for efficiencies as low as η ∼ 50% at each site, as N → ∞.
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I. INTRODUCTION

Bell derived his famous inequalities as a way to distinguish
the predictions of quantum mechanics from those of local
hidden variable (LHV) theories [1,2]. Bell’s original work
examined two spatially separated spin-1/2 (qubit) systems.
Experiments have supported quantum mechanics, which pre-
dicts a violation of the Bell inequality, thus falsifying all
LHV theories [3–5]. Work on Bell nonlocality for multipartite
systems (sites) began with the analyses of Svetlichny [6] and
Greenberger, Horne, and Zeilinger (GHZ) [7]. Mermin showed
that the degree of violation increased exponentially with the
number of sites, N [8]. This result translated to a surprising
robustness to loss and noise for larger N [9]. Experiments
have realized N -partite GHZ states for N ∼ 6–8 [10,11] and
investigated their nonlocal properties for N ∼ 3 [12].

Studies of Bell nonlocality to date have been mainly
restricted to experiments with two measurement settings at
each site [2,13,14]. Relatively little is known about Bell
nonlocality for experiments with multiple measurement set-
tings. Yet, multisetting experiments, first studied by Gisin
and Collins [15,16], could have an important application
to quantum information tasks. For example, quantum key
distribution protocols depend on implementation of random
independent switching between measurement settings at the
relevant sites. Random switching between more measurement
settings could increase security in some cases, by making it
more difficult for Eve to gain correct knowledge of measure-
ment choices. Also important is that for some applications
such as device-independent cryptography, one may require
rigorous violation of the relevant Bell inequality [17]. This
is also essential for the rigorous falsification of all LHV
theories [18,19]. Work by Brunner et al. [20] and Pal et al. [21]
reveal multisetting Bell inequalities to be promising for this
purpose.

Recent experiments have violated a Bell inequality without
detection of fair sampling assumptions, using two measure-
ment settings and detectors with efficiencies of η ∼ 75% [19].
This violation was obtained using a nonmaximally entangled
state [22,23]. Examination of LHV models gives a lower bound
on the efficiencies η required for violations of M-setting Bell
inequalities as (at least) η � 1/M [24–27], suggesting it may
be possible to rigorously violate a Bell inequality at low
efficiencies by using more than two settings. In fact, three-
setting inequalities have been proposed for the two-site case,
to allow a loophole-free violation with 43% at one detector

(for the nonmaximally entangled state) [20,28]. Multisetting
inequalities have been used for the loophole-free detection of
the nonlocality associated with the Einstein-Podolsky-Rosen
(EPR) paradox (“EPR steering” [29]), for efficiencies well
below 50% [30,31] and consistent with the bound η >

1/M [27]. For the maximally entangled state, LHV models
exist to imply 50% as a feasible efficiency for symmetric Bell
experiments [32,33], but it was initially unclear how one could
violate a Bell inequality at this efficiency [20]. Subsequently,
Cavalcanti et al. presented such an inequality for two settings
that allowed violations at 50% for N -partite GHZ states as
N → ∞ [26,34]. In 2012, Pal et al. confirmed the advantage
of multisettings, by deriving a family of multisetting Bell
inequalities for N -partite GHZ states that predict threshold
efficiencies as low as 38% for accessible parameters [21].

In this paper, we present a second set of multisetting
multipartite Bell inequalities that are predicted to be violated
for reasonable efficiencies. Shchukin and Vogel (SV) have
derived two multisetting Bell inequalities, whose structure is
closely related to the algebra of quaternions and octonions [35].
The two-setting version of these inequalities was originally de-
rived by Cavalcanti-Foster-Reid-Drummond (CFRD) [36] and
studied in the qubit form by Salles et al. [37] and Cavalcanti
et al. [34]. For two settings, violations for N -partite qubit
GHZ states are possible provided N > 3. These violations are
different from those predicted by Mermin-Ardehali-Belinskii-
Klyshko (MABK) [8,38,39], in the sense that they allow Bell
nonlocality for reduced detection efficiencies, approaching the
limit η → 50% as N → ∞ [26,34]. Salles et al. reported
three-setting violations of generalizations of these inequalities,
achieved using the GHZ state [37]. Up to now, however, as
far as we know, there has been no explicit demonstration of
violations of the quaternion or octonion Shchukin-Vogel Bell
inequalities for higher settings.

Here, we show violation of the Shchukin-Vogel quaternion
and octonion Bell inequalities using the GHZ state, for all
N � 3 and for experiments involving M = 2–8 measurement
settings. We show that the violations are predicted for efficien-
cies η > 2

2
N

−1, independent of the number of measurement
settings M . Although this does not give the optimistically
expected dependence on M [24,25], the efficiency approaches
50% for large number of sites for all M and is obtained for the
maximally entangled GHZ state based on inequalities similar
to those of MABK. The case of the generalized GHZ state has
been examined for multisetting generalizations of the MABK
inequalities, where it was found that more than two settings
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can provide an advantage in detecting nonlocality [40–42]. We
discuss this case for the SV inequalities, as well as the potential
for experimental implementation, noting that heralding would
be required.

II. SHCHUKIN-VOGEL MULTISETTING BELL
INEQUALITIES

We consider N spatially separated systems and spacelike
separated measurements performed on them. We suppose there
are two measurement settings at each site labeled by k, so that
observables Âk and B̂k are measured by each setting. Then if
local hidden variable (LHV) theories are valid, CFRD showed
that the following inequality will hold [36]:∣∣∣∣∣

〈
N∏

k=1

(Ak + iBk)

〉∣∣∣∣∣
2

�
〈

N∏
k=1

{(Ak)2 + (Bk)2}
〉
, (1)

where Ak and Bk are the results of the measurements Âk

and B̂k . The moments that are required to be measured
on the left side of the inequality are determined from the
expansion involving the complex numbers fk = Ak + iBk .
The moments for an arbitrary number of sites may be written
using a recursive relation. Inequalities of this type have been
studied further in Refs. [26,34,43–46] and adapted to give
inequalities for other forms of nonlocality in Refs. [34,46,47].
Mermin originally formulated inequalities using the imaginary
construction [8], and the left side of this inequality is closely
related to that of the MABK inequalities [38,39]. For two sites,
the CFRD inequality is

〈A1A2 − B1B2〉2 + 〈B1A2 + A1B2〉2

�
〈(
A2

1 + B2
1

) × (
A2

2 + B2
2

)〉
. (2)

Schukin and Vogel (SV) developed the theory further to
derive a four and eight observable form of these inequali-
ties [35]. We adopt their notation, denoting the outcomes of
four observables that can be measured at each site k by Ak ,
Bk , Ck , and Dk , and the outcomes of eight observables by Ak ,
Bk , Ck , Dk , Ek , Fk , Gk , and Hk . The quaternion multipartite
inequalities are evaluated by forming the quaternion qk =
Ak + iBk + jCk + kDk on the left side and using quaternion
multiplication. The octonion multipartite inequalities are sim-
ilarly developed using the multiplication laws for octonions.

Quaternion and octonion Bell inequalities

For two sites, the quaternionic Bell inequality is [35]

〈A1A2 − B1B2 − C1C2 − D1D2〉2

+〈B1A2 + A1B2 − D1C2 + C1D2〉2

+〈C1A2 − B1D2 + A1C2 + D1B2〉2

+〈D1A2 + A1D2 − C1B2 + B1C2〉2

�
〈(
A2

1 + B2
1 + C2

1 + D2
1

)(
A2

2 + B2
2 + C2

2 + D2
2

)〉
. (3)

For the two-side case, we are considering the Bell inequality

|〈(Â1 + iB̂1 + jĈ1 + kD̂1)(Â2 + iB̂2 + jĈ2 + kD̂2)〉|2
�

〈(
Â2

1 + B̂2
1 + Ĉ2

1 + D̂2
1

)(
Â2

2 + B̂2
2 + Ĉ2

2 + D̂2
2

)〉
, (4)

where here the well-known quaternion algebra i2 = j 2 =
k2 = ijk = −1, ij = −ji = k,jk = −kj = i applies. This
inequality holds based on the fact that for any observable Â,
〈Â〉2 � 〈Â2〉. Recursive application of (4) allows for arbitrarily
many (N) sites. The product (Â1 + iB̂1 + jĈ1 + kD̂1)(Â2 +
iB̂2 + jĈ2 + kD̂2) can be expanded into

(Â1 + iB̂1 + jĈ1 + kD̂1)(Â2 + iB̂2 + jĈ2 + kD̂2)

= Îr + i · Îi + j · Îj + k · Îk, (5)

where

Îr = Â1Â2 − B̂1B̂2 − Ĉ1Ĉ2 − D̂1D̂2,

Îi = Â1B̂2 + B̂1Â2 + Ĉ1D̂2 − D̂1Ĉ2,

Îj = Â1Ĉ2 − B̂1D̂2 + Ĉ1Â2 + D̂1B̂2,

Îk = Â1D̂2 + B̂1Ĉ2 − Ĉ1B̂2 + D̂1Â2. (6)

The terms Ir ,Ii,Ij ,Ik satisfy the Euler square identity

Î 2
r + Î 2

i + Î 2
j + Î 2

k

= (
Â2

1 + B̂2
1 + Ĉ2

1 + D̂2
1

)(
Â2

2 + B̂2
2 + Ĉ2

2 + D̂2
2

)
, (7)

which is fundamental for inequality (4) to hold [35].
The three-site quaternion Bell inequality is derived simi-

larly, and its expanded form is written explicitly as [35]

(Ir )2 + (Ii)
2 + (Ij )2 + (Ik)2

�
〈(
A2

1 + B2
1 + C2

1 + D2
1

)(
A2

2 + B2
2 + C2

2 + D2
2

)
× (

A2
3 + B2

3 + C2
3 + D2

3

)〉
, (8)

where

Ir = 〈(A1A2 − B1B2 − C1C2 − D1D2)A3

−(B1A2 + A1B2 − D1C2 + C1D2)B3

−(C1A2 − B1D2 + A1C2 + D1B2)C3

−(D1A2 + A1D2 − C1B2 + B1C2)D3〉,

Ii = 〈(A1A2 − B1B2 − C1C2 − D1D2)B3

+(B1A2 + A1B2 − D1C2 + C1D2)A3

+(C1A2 − B1D2 + A1C2 + D1B2)D3

−(D1A2 + A1D2 − C1B2 + B1C2)C3〉,

Ij = 〈(A1A2 − B1B2 − C1C2 − D1D2)C3

−(B1A2 + A1B2 − D1C2 + C1D2)D3

+(C1A2 − B1D2 + A1C2 + D1B2)A3

+(D1A2 + A1D2 − C1B2 + B1C2)B3〉,

Ik = 〈(A1A2 − B1B2 − C1C2 − D1D2)D3

+(B1A2 + A1B2 − D1C2 + C1D2)C3

−(C1A2 − B1D2 + A1C2 + D1B2)B3

+(D1A2 + A1D2 − C1B2 + B1C2)A3〉. (9)

The N -site inequality is readily evaluated in a recursive form
that enables computation.

We define the quantity BN,M as the ratio of the left-hand
side (lhs) to the right-hand side (rhs) of the Bell inequality
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[Eq. (1), Eq. (3), or Eq. (8), etc.] that has M settings and N

sites, so that

BN,M > 1 (10)

indicates a violation of the Bell inequality. The expressions for
the octonion Bell inequalities are derived similarly, using the
eight square identity as explained by Shchukin and Vogel [35].
A setup with three, five, six, and seven settings can be achieved
by simply defining the remaining settings as identical to zero.
For example, a setup of three settings can be achieved by
setting all Di = 0.

III. QUANTUM PREDICTIONS FOR GHZ STATES

We suppose the multipartite system is N spin-1/2 subsys-
tems, prepared in a GHZ state. The GHZ state

|�〉 = 1√
2
{|↑〉⊗N ± |↓〉⊗N } (11)

is a maximally entangled state for N spin-1/2 systems. The
Pauli spin observables applying to a measurement on the
system at the kth site are denoted σ̂x

k , σ̂y
k , σ̂z

k . Here, |↑〉k
and |↓〉k denote the eigenstates of σ̂ k

z . We suppose the possible
measurements are the set of all possible spin observables. The
GHZ superposition state has been generally defined here with
either sign in the superposition of probability amplitudes.
However, as explained later, the final results for the Bell
violations do not depend on the sign.

The right side of the inequalities (1) and (4) simplify, for the
Pauli spin experiment where the results of the measurements
are always ±1. For the case of two settings (observables), the
right side of the inequality reduces to 2N . For four settings,
the right side reduces to 4N , and for eight settings, it reduces
to 8N .

To evaluate the left side of the inequalities, we need
to calculate the moments of the GHZ state. For example,
for N = 2, we substitute in (4) the operators Âk = n̂1k ·
σ̂ k , B̂k = n̂2k · σ̂ k , Ĉk = n̂3k · σ̂ k , and D̂k = n̂4k · σ̂ k , where
σ̂ k is understood to act only on particle k, and n̂ij are
arbitrary unit-length vectors. One can rewrite n̂α · σ̂ as
sin (θα) cos (ϕα)σ̂x + sin (θα) sin (ϕα)σ̂y + cos (θα)σ̂z. Consid-
ering a typical term 〈�±|σ̂ 1

i σ̂ 2
j |�±〉 where i,j = {x,y,z}

and |�±〉 = 1√
2
(|↑〉1|↑〉2 ± |↓〉1|↓〉2), as they appear in the

left side of (4), one finds that the only nonzero terms are
〈σ̂ 1

x σ̂ 2
x 〉 = ±1, 〈σ̂ 1

y σ̂ 2
y 〉 = ∓1, and 〈σ̂ 1

z σ̂ 2
z 〉 = 1. Hence, a term

〈X̂i1X̂j2〉 will reduce to

〈X̂i1X̂j2〉 = sin(θi1) sin(θj2)

×[± cos(ϕi1) cos(ϕj2) ∓ sin(ϕi1) sin(ϕj2)]

+ cos(θi1) cos(θj2), (12)

where X̂1 = Â, X̂2 = B̂, X̂3 = Ĉ, and X̂4 = D̂. Similarly, for
evaluating the predictions at larger N , only some correlations
will be nonzero. The nonzero terms are as given in Table I.
Note that because of the alternating nature of the terms in
Table I, for a system with all polar angles fixed at θ = π

4 , the
relative sign in the GHZ state produces an overall sign that
affects all terms in Table I equally. This means that for such a

TABLE I. Evaluation of Pauli products, showing the nonzero
moments predicted by the GHZ state for various N . Here, every
combination of σ̂xyz acting on different particles must be considered
as nonzero. For example, the term 〈σ̂x σ̂y σ̂y〉 means that 〈σ̂ 1

x σ̂ 2
y σ̂ 3

y 〉,
〈σ̂ 1

y σ̂ 2
x σ̂ 3

y 〉, and 〈σ̂ 1
y σ̂ 2

y σ̂ 3
x 〉 must be taken into consideration.

N

3
〈σ̂x σ̂x σ̂x〉 = ±1
〈σ̂x σ̂y σ̂y〉 = ∓1

4

〈σ̂x σ̂x σ̂x σ̂x〉 = ±1
〈σ̂x σ̂x σ̂y σ̂y〉 = ∓1
〈σ̂y σ̂y σ̂y σ̂y〉 = ±1
〈σ̂zσ̂zσ̂zσ̂z〉 = 1

5
〈σ̂x σ̂x σ̂x σ̂x σ̂x〉 = ±1
〈σ̂x σ̂x σ̂x σ̂y σ̂y〉 = ∓1
〈σ̂x σ̂y σ̂y σ̂y σ̂y〉 = ±1

6

〈σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x〉 = ±1
〈σ̂x σ̂x σ̂x σ̂x σ̂y σ̂y〉 = ∓1
〈σ̂x σ̂x σ̂y σ̂y σ̂y σ̂y〉 = ±1
〈σ̂y σ̂y σ̂y σ̂y σ̂y σ̂y〉 = ∓1
〈σ̂zσ̂zσ̂zσ̂zσ̂zσ̂z〉 = 1

7

〈σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x〉 = ±1
〈σ̂x σ̂x σ̂x σ̂x σ̂x σ̂y σ̂y〉 = ∓1
〈σ̂x σ̂x σ̂x σ̂y σ̂y σ̂y σ̂y〉 = ±1
〈σ̂x σ̂y σ̂y σ̂y σ̂y σ̂y σ̂y〉 = ∓1

setup, the left side of the SV inequality will be independent of
the sign of the GHZ state due to the squaring of its terms.

When N = 2, the GHZ state reduces to a Bell state. In
this case, no violation of the two-site inequality is possi-
ble, consistent with results in Ref. [37]. As an example,
we could take A = σ̂x and B = σ̂y , C1 = 1√

2
{−σ̂x + σ̂y},

D1 = 1√
2
{−σ̂x − σ̂y}, and C2 = 1√

2
{σ̂x + σ̂y}, D2 = 1√

2
{σ̂x −

σ̂y}. Then we find C1C2 − D1D2 = A1A2 − B1B2 = σ̂ 1
x σ̂ 2

x −
σ̂ 1

y σ̂ 2
y , which gives the maximum of 4, and −D1C2 +

C1D2 = B1A2 + A1B2 = σ̂ 1
x σ̂ 2

y + σ̂ 1
y σ̂ 2

x (which will give
0), and C1A2 − B1D2 + A1C2 + D1B2 = 0 and D1A2 +
A1D2 − C1B2 + B1C2, so the left and right sides of the
inequality are equal. That there is no violation is confirmed
using the full search over all possible spin measurement
choices.

Violations of the SV Bell inequality become possi-
ble for N � 3. We can verify algebraically that the
choice of measurements of C1 = C2 = 1

2 {σ̂x + √
3σ̂y}, D1 =

−D2 = 1
2 {√3σ̂x − σ̂y}, C3 = 1

2 {−σ̂x + √
3σ̂y}, and D3 =

1
2 {√3σ̂x + σ̂y} will give a −4 for both of the first two terms
in the Ir . However, the last two terms will be identically zero
for this choice of measurement, so Ir = −8. We see Ii = 0,
Ij = −4, and Ik = −4

√
3. The result is that the left side of

the inequality is 2 × 82 and the right side is 43, which gives a
significant violation. The numerical search over all possible
angles confirmed the result as that giving the maximum
violation.

For N sites and M settings, the right side of the SV Bell
inequality becomes rhs = MN . Our numerical analysis has
shown to great accuracy for N = 2,3, . . . ,7 sites and M =
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TABLE II. Optimal measurement settings φkn, k = A,B,C,D,
at each site n = 1, . . . ,N . The settings are given in spherical
coordinates, with all θ ≡ 0 at all sites, so that, e.g., Â1 =
(cos φA1, sin φA1,0)T × σ̂ 1 = cos φA1σ̂

1
x + sin φA1σ̂

1
y . A higher num-

ber of sites N can be treated by simply continuing the alternating
pattern. The settings for higher M are given in Tables III–V.

N 2 settings φ 3 settings φ

A B A B C

1 0 π

2 1 0 2π

3
π

3

3 2 0 π

2 2 0 π

3
2π

3

3 0 π

2 3 0 2π

3
π

3

A B A B C

1 0 π

2 1 0 2π

3
π

3

4 2 0 π

2 2 0 π

3
2π

3

3 0 π

2 3 0 2π

3
π

3

4 0 π

2 4 0 π

3
2π

3

2,3, . . . ,8 settings that the angle choices stated in Tables II–V
yield a maximal value for the left-hand side of the SV Bell
inequalities, which is given by lhs = MN × 2N−2. The rhs of
the inequality is rhs = MN. Not taking detector inefficiencies
into account, we get a Bell violation value of lhs

rhs = 2N−2, as
plotted in Fig. 1, regardless of the number of settings used.
We note that while the SV Bell inequalities are derived based
on four and eight observables, using quaternion and octonion
algebra, respectively, we can by setting one or more of the
observables to zero in each of them arrive at Bell inequalities
for fewer settings. In this way, the quaternion Bell inequality is
also a Bell inequality for M = 2,3,4 settings, reducing in the
case of M = 2 to the CFRD Bell inequality for spins [34,37].
Similarly, the octonion SV Bell inequality gives rise to the Bell
inequalities with M = 5,6,7, and 8 settings.

FIG. 1. (Color online) Threshold detector efficiency for N sites:
The minimal detector efficiency ηmin needed to observe Bell violations
for a given number of sites N . Inset: The Bell value BN,M vs N .
BN,M > 1 indicates violation of the Bell inequality. The results are
independent of the number of measurement settings M .

IV. DETECTION INEFFICIENCIES,
NOISE AND HERALDING

We now examine the important question of the effect of
detection inefficiencies on the Bell violations. The following
analysis will model the loss that takes place due to detector
inefficiencies and propagation through the medium. We extend
the analysis given in Ref. [34]. We represent the experimental
observables as the Schwinger spin observables,

σ̂z = â
†
+â+ − â

†
−â−,

σ̂x = â
†
+â− + â+â

†
−,

σ̂y = (â†
+â− − â+â

†
−)/i, (13)

σ̂ 2 = n̂(n̂ + 2),

n̂ = â
†
+â+ + â

†
−â−,

where â± is the destruction boson operator for two orthogonal
modes ± at the site k. Here, σ̂ 2 = (σ̂x)2 + (σ̂y)2 + (σ̂z)2, and
n̂ is the total number operator for each site. The superscripts
k denote which site is being referred to. Usually, the modes
± correspond to orthogonal field polarization and â

k†
± âk

± is the
number operator for a photonic mode ± at site k. At each
site, the spin measurement σ̂ k

φ is performed by a polarization
measurement chosen at a suitable angle (and possibly with
phase shifts) [48]. For example, the modes at the detectors
after the polarizer measurement for σ̂φ can be represented by
the transformed modes ĉ+, ĉ− which are linear combinations
of â± and for which ĉ

†
+ĉ+ − ĉ

†
−ĉ− = σ̂φ . The photonic GHZ

state is

|ψ〉 = 1√
2

(|1〉⊗N + eiφ|0〉⊗N ), (14)

where |n〉⊗N ≡ ⊗N
k=1 |n〉k and |n〉k are the eigenstates of n̂k .

We see that components of the photonic GHZ state are mapped
into the ±1 eigenstates of σ̂z: |↓〉k → |0〉+k|1〉−k and |↑〉k →
|1〉+k|0〉−k .

With nonideal detection efficiencies, not all photons that
impinge on the detector will be recorded. For each emission
event, there are three outcomes at each site. We follow
the traditional example [2] and denote the outcomes of the
observables A, B, etc. as +1, −1, or 0 if the photon is
detected “up,” “down,” or “not at all,” respectively. There are
two detectors at each site, placed to determine the number
of photons (0 or 1) corresponding to modes ĉ

(k)
+ and ĉ

(k)
− ,

respectively (see Refs. [2,49] for details). We model the
inefficiency (loss) of each detector using a simple beam-splitter
model, where we evaluate the moments of detected fields âdet

given by

âdet = √
ηâ +

√
1 − ηâvac. (15)

Here, η is the probability that an incoming photon is detected.
The â is the boson operator for the incoming field mode, and
âvac is the boson operator for a vacuum reservoir mode that
couples to the incoming field and into which quanta are lost.

Equation (15) enables calculation of the predicted effect of
detection inefficiencies on the moments needed for the Bell
inequalities. It is important to understand how the experiment
would be carried out. In a LHV theory, the quantities A,B, . . .
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TABLE III. Optimal angles for four and five measurement
settings, as described for Table II.

N 4 settings φ 5 settings φ

A B C D A B C D E

1 0 π

6 − π

3
π

2 1 0 π

6 − π

3
4π

3
2π

3

3 2 0 5π

6
4π

3
π

2 2 0 5π

6
4π

3 − π

3
π

3

3 0 π

6 − π

3
π

2 3 0 π

6 − π

3
4π

3
2π

3

A B C D A B C D E

1 0 π

6 − π

3
π

2 1 0 π

6 − π

3
4π

3
2π

3

4 2 0 5π

6
4π

3
π

2 2 0 5π

6
4π

3 − π

3
π

3

3 0 π

6 − π

3
π

2 3 0 π

6 − π

3
4π

3
2π

3

4 0 5π

6
4π

3
π

2 4 0 5π

6
4π

3 − π

3
π

3

that appear in the inequality are numbers that now have
the possible values ±1,0. The derivation of the Bell SV
inequalities does not restrict the values that the variables can
attain, and hence the same inequalities will still hold rigorously
in the lossy scenario, to allow a loophole-free test of LHV
theories. In an ideal situation, one heralds the emission event
and detects the value of the observables A,B, . . . at each of the
sites, some being +1 or −1, and some being 0. One evaluates
from the data the moments that are defined on the left and
right sides of the inequality. If these moments violate the
inequalities, then we have confirmed the failure of all LHV
theories to describe the experiment.

What do we expect to obtain for a given detection ineffi-
ciency η? On the lhs of the inequalities, we measure moments
like those in the Clauser-Horne-Shimony-Holt (CHSH) Bell
inequalities [2,13], such as 〈A1A2 · · ·AN 〉. Consider first two
sites. We denote the joint probability for the outcome +1 and
−1 at sites 1 and 2, respectively, by P (+,−), etc. Thus,

〈A1A2〉 = P (+,+) + P (−,−) − P (+,−) − P (−,+). (16)

The probabilities where the outcome is the null event 0 do not
directly contribute because their value is A = 0, but the null
events contribute to the total number of counts and hence to
the normalization of the probabilities. The joint probabilities
P (+,+), etc. involve a single photon detection at each site,
and hence will scale as η2. More generally, with N sites, there
will be N photon detections and we will obtain a scaling of
ηN . Hence we obtain, for the left side of the Bell inequalities,

TABLE IV. Optimal angles for six and seven measurement
settings, as described for Table II.

N 6 settings φ 7 settings φ

A B C D E F A B C D E F G

1 0 π

8
3π

8
5π

8
7π

8
π

2 1 0 π

8
3π

8
5π

8
7π

8 − π

3
4π

3

3 2 0 7π

8
5π

3
3π

8
π

8
π

2 2 0 7π

8
5π

8
3π

8
π

8
4π

3 − π

3

3 0 π

8
3π

8
5π

8
7π

8
π

2 3 0 π

8
3π

8
5π

8
7π

8 − π

3
4π

3

A B C D E F A B C D E F G

1 0 π

8
3π

8
5π

8
7π

8
π

2 1 0 π

8
3π

8
5π

8
7π

8 − π

3
4π

3

4 2 0 7π

8
5π

3
3π

8
π

8
π

2 2 0 7π

8
5π

8
3π

8
π

8
4π

3 − π

3

3 0 π

8
3π

8
5π

8
7π

8
π

2 3 0 π

8
3π

8
5π

8
7π

8 − π

3
4π

3

4 0 7π

8
5π

3
3π

8
π

8
π

2 4 0 7π

8
5π

8
3π

8
π

8
4π

3 − π

3

TABLE V. Optimal angles for eight measurement settings, as
described for Table II.

N 8 settings φ

A B C D E F G H

1 0 π

8
3π

8
5π

8
7π

8 − π

8 − 5π

8
3π

2

3 2 0 7π

8
5π

8
3π

8
π

8
9π

8
13π

8 − π

2

3 0 π

8
3π

8
5π

8
7π

8 − π

8 − 5π

8
3π

2

A B C D E F G H

1 0 π

8
3π

8
5π

8
7π

8 − π

8 − 5π

8
3π

2

4 2 0 7π

8
5π

8
3π

8
π

8
9π

8
13π

8 − π

2

3 0 π

8
3π

8
5π

8
7π

8 − π

8 − 5π

8
3π

2

4 0 7π

8
5π

8
3π

8
π

8
9π

8
13π

8 − π

2

lhs = η2NMN × 2N−2. On the other hand, the moments on
the rhs involve the expectation values of the A2 values. The
A2 value is always 1 if the photon is detected either “up” or
“down,” and is always 0 if the photon is not detected. Denoting
the probabilities for the outcomes +1, −1, and 0 at site k by
Pk(+), Pk(−), and Pk(0), respectively, we note that〈

A2
1A

2
2

〉 = P (+,+) + P (+,−) + P (−,+) + P (−,−). (17)

The moment scales with efficiency as η2. Extending to the
product of results for 〈A2

1A
2
2 . . .〉 based on measurement at the

N sites, we see the prediction is rhs = ηNMN . This means that
an experiment involving N sites requires a minimum detector
efficiency of ηmin = 2

2
N

−1 in order to detect Bell violation,
regardless of the number of settings M used (Fig. 1).

We note that because of the square on the lhs of the SV Bell
inequalities, the violation cannot straightforwardly be obtained
without determining the probability of the zero detection event
at all sites. Thus, in the experiment described, there is a need
for heralding the emission events in order to obtain a violation
of the inequalities [50]. This provides a substantial limitation.
Alternative experimental arrangements could be explored in
the future. For example, it is possible that an analysis of the
type presented by Garg and Mermin for the CHSH inequalities
may be useful in providing an alternative experiment, without
the need for heralding [51].

As a further calculation of the sensitivity of the Bell
violations to possible noise sources, we show in Fig. 2 the
effect of Gaussian random noise on the measurement angle.
Regardless of the number of settings, the violations are robust
to this noise source.

V. GENERALIZED GHZ STATES

Now we turn to the generalized GHZ state

|�〉 = cos α|↑〉⊗N + sin α|↓〉⊗N . (18)

It has been shown for the bipartite (N = 2) case that the
nonmaximally entangled state (which has α < π/4) allows
violations of Bell inequalities for lower efficiency thresholds
than the maximally entangled state (α = π/4) [23]. These
violations are achieved with asymmetric Clauser-Horne-type
inequalities [19,20,22,28]. Also interesting is that the MABK
Bell inequalities do not allow any violation for the generalized
GHZ state |�〉 = cos α|000〉 + sin α|111〉 for some values of
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0 0.05π 0.10π 0.15π 0.20π 0.25π 0.30π

Δφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
N

,M

FIG. 2. (Color online) Effect of measurement noise: The Bell
value BN,M achievable for N = 4 sites and (from top to lower line)
M = 2,3,8 measurement settings when the ensemble averages are
evaluated with a random Gaussian fluctuation of standard deviation
�φ in the measurement angles. Here, detector efficiency is η = 0.75.
Violation of the Bell inequality is achieved when BN,M > 1. The mean
angle setting is optimized according to the values given in Tables II
and V, respectively.

α, namely sin 2α � 1/
√

2N−1 and N odd [40]. However, a
violation becomes possible on using extensions of the MABK
inequalities for four measurement settings [41,42].

We are thus motivated to ask the following question:
For what range of α does the two-setting CFRD-type Bell
inequality allow a test of nonlocality, and can this range be
extended (as in the MABK case) by considering multiple
settings? Our answer to this question is shown in Figs. (3)
and (4).

For detection efficiencies at η ∼ 0.65, one would require
GHZ states with N � 6 to obtain a violation of the Bell
inequalities. This would not seem unrealistic, given the

0 0.1π 0.2π 0.3π 0.4π 0.5π

α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
N

,M

FIG. 3. (Color online) Violations for the generalized GHZ state:
Here BN,M > 1 indicates violation of the Bell inequality with (from
lower to top line) N = 3,4,5,6 sites and M = 2 measurement settings
for a detector efficiency of η = 0.75%. The results for settings M =
2–8 are indistinguishable.

0 0.1π 0.2π 0.3π 0.4π 0.5π

α

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

η m
in

FIG. 4. (Color online) Threshold detector efficiencies for the
generalized GHZ state: Here, BN,M > 1 indicates violation of the
Bell inequality with (from top to lower line) N = 3,4,5,6 sites and
M = 2 measurement settings. The results for settings M = 2–8 are
indistinguishable.

experiments of Refs. [10] which report creation of photonic
GHZ states for N = 6–8. A challenging feature of the experi-
mental implementation would also be to correctly measure the
probability of the null (zero-detection) event.

We find that violations are possible over a significant range
of α, though the range is a more restricted range than that
obtainable for the MABK inequalities. This is not unexpected,
given that the inequalities here have a smaller violation ratio B

and do not violate LHV theories at all for N = 2. As with the
MABK case, the range of α giving a violation expands with
N , but in this case the results are essentially unchanged with
M . Our numerical results suggest that the respective ranges of
α coincide up to a shift of N by one; that is, our numerical
results are consistent with the relation sin 2α � 1/

√
2N−2 for

the SV inequalities.

VI. DISCUSSION AND CONCLUSION

We have presented multisetting Bell inequalities that allow
violation for an N -partite GHZ state when the efficiencies at
each site approach η → 50%. This supplements the earlier
work by Pal et al., which reported multisetting Bell violations
for reasonable efficiencies (as low as 38% for eight sites and
11 settings) [21]. We show that for the inequalities considered
in this paper, an efficiency limit of arbitrarily close to 50%
is attainable independently of the number of measurement
settings and for the maximally entangled N -partite GHZ state
that has a symmetric weighting of its composite spin states,
provided one uses a sufficiently large number of sites N . The
inequalities used here are different from those of Pal et al., in
that the “no detection” event is assigned the outcome of zero
that is distinct from the Pauli spin values.

The violations are obtained using the spin version of the
Shchukin-Vogel inequalities. These, however, require three or
more sites (N � 3) in order to allow a test of Bell nonlocality
even at ideal efficiencies. By comparison, our studies for
this case suggest that violations are not possible at such
low-efficiency thresholds for multipartite W states. We also
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note that the natural multipartite extensions of Gisin’s original
multisetting inequalities [15] would not lead to lower threshold
efficiencies.
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